Asymptotics of the principal eigenvalue for a linear time-periodic parabolic operator II: Small diffusion

نویسندگان

چکیده

We investigate the effect of small diffusion on principal eigenvalues linear time-periodic parabolic operators with zero Neumann boundary conditions in one dimensional space. The asymptotic behaviors eigenvalues, as coefficients tend to zero, are established for non-degenerate and degenerate spatial-temporally varying environments. A new finding is dependence these periodic solutions a specific ordinary differential equation induced by drift. proofs based upon delicate constructions super/sub-solutions applications comparison principles.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of the Schwarz Rearrangement on the Periodic Principal Eigenvalue of a Nonsymmetric Operator

This paper is concerned with the periodic principal eigenvalue kλ(μ) associated with the operator − d 2 dx2 − 2λ d dx − μ(x)− λ, (1) where λ ∈ R and μ is continuous and periodic in x ∈ R. Our main result is that kλ(μ∗) ≤ kλ(μ), where μ∗ is the Schwarz rearrangement of the function μ. From a population dynamics point of view, using reaction-diffusion modeling, this result means that the fragment...

متن کامل

Small time asymptotics of diffusion processes

We establish the short-time asymptotic behaviour of the Markovian semigroups associated with strongly local Dirichlet forms under very general hypotheses. Our results apply to a wide class of strongly elliptic, subelliptic and degenerate elliptic operators. In the degenerate case the asymptotics incorporate possible non-ergodicity.

متن کامل

a time-series analysis of the demand for life insurance in iran

با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند

Eigenvalue asymptotics for the Schrödinger operator with a δ-interaction on a punctured surface

Given n ≥ 2, we put r = min{ i ∈ N; i > n/2 }. Let Σ be a compact, Cr-smooth surface in Rn which contains the origin. Let further {Sǫ}0≤ǫ<η be a family of measurable subsets of Σ such that supx∈Sǫ |x| = O(ǫ) as ǫ → 0. We derive an asymptotic expansion for the discrete spectrum of the Schrödinger operator −∆−βδ(·−Σ\Sǫ) in L2(Rn), where β is a positive constant, as ǫ → 0. An analogous result is g...

متن کامل

On Principal Eigenvalues for Periodic Parabolic Steklov Problems

LetΩ be aC2+γ domain in RN ,N ≥ 2, 0 < γ < 1. LetT>0 and let L be a uniformly parabolic operator Lu= ∂u/∂t−∑i, j(∂/∂xi)(ai j(∂u/∂xj)) +∑ j b j(∂u/∂xi) + a0u, a0 ≥ 0, whose coefficients, depending on (x, t) ∈Ω×R, are T periodic in t and satisfy some regularity assumptions. Let A be the N ×N matrix whose i, j entry is ai j and let ν be the unit exterior normal to ∂Ω. Let m be a T-periodic functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2021

ISSN: ['2330-0000']

DOI: https://doi.org/10.1090/tran/8364