Asymptotics of the principal eigenvalue for a linear time-periodic parabolic operator II: Small diffusion
نویسندگان
چکیده
We investigate the effect of small diffusion on principal eigenvalues linear time-periodic parabolic operators with zero Neumann boundary conditions in one dimensional space. The asymptotic behaviors eigenvalues, as coefficients tend to zero, are established for non-degenerate and degenerate spatial-temporally varying environments. A new finding is dependence these periodic solutions a specific ordinary differential equation induced by drift. proofs based upon delicate constructions super/sub-solutions applications comparison principles.
منابع مشابه
The Effect of the Schwarz Rearrangement on the Periodic Principal Eigenvalue of a Nonsymmetric Operator
This paper is concerned with the periodic principal eigenvalue kλ(μ) associated with the operator − d 2 dx2 − 2λ d dx − μ(x)− λ, (1) where λ ∈ R and μ is continuous and periodic in x ∈ R. Our main result is that kλ(μ∗) ≤ kλ(μ), where μ∗ is the Schwarz rearrangement of the function μ. From a population dynamics point of view, using reaction-diffusion modeling, this result means that the fragment...
متن کاملSmall time asymptotics of diffusion processes
We establish the short-time asymptotic behaviour of the Markovian semigroups associated with strongly local Dirichlet forms under very general hypotheses. Our results apply to a wide class of strongly elliptic, subelliptic and degenerate elliptic operators. In the degenerate case the asymptotics incorporate possible non-ergodicity.
متن کاملa time-series analysis of the demand for life insurance in iran
با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند
Eigenvalue asymptotics for the Schrödinger operator with a δ-interaction on a punctured surface
Given n ≥ 2, we put r = min{ i ∈ N; i > n/2 }. Let Σ be a compact, Cr-smooth surface in Rn which contains the origin. Let further {Sǫ}0≤ǫ<η be a family of measurable subsets of Σ such that supx∈Sǫ |x| = O(ǫ) as ǫ → 0. We derive an asymptotic expansion for the discrete spectrum of the Schrödinger operator −∆−βδ(·−Σ\Sǫ) in L2(Rn), where β is a positive constant, as ǫ → 0. An analogous result is g...
متن کاملOn Principal Eigenvalues for Periodic Parabolic Steklov Problems
LetΩ be aC2+γ domain in RN ,N ≥ 2, 0 < γ < 1. LetT>0 and let L be a uniformly parabolic operator Lu= ∂u/∂t−∑i, j(∂/∂xi)(ai j(∂u/∂xj)) +∑ j b j(∂u/∂xi) + a0u, a0 ≥ 0, whose coefficients, depending on (x, t) ∈Ω×R, are T periodic in t and satisfy some regularity assumptions. Let A be the N ×N matrix whose i, j entry is ai j and let ν be the unit exterior normal to ∂Ω. Let m be a T-periodic functio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2021
ISSN: ['2330-0000']
DOI: https://doi.org/10.1090/tran/8364